На рисунках схематически представлены графики распределения плотности вероятности по ширине одномерного потенциального ящика с бесконечно высокими стенками для состояний электрона с различными значениями главного квантового числа n:
В состоянии с n = 2 вероятность обнаружить электрон в интервале от до равна …
В состоянии с n = 2 вероятность обнаружить электрон в интервале от до равна …
- ✓
Вероятность обнаружить микрочастицу в интервале (a, b) для состояния, характеризуемого определенной -функцией, равна . Из графика зависимости от х эта вероятность находится как отношение площади под кривой в интервале (a, b) к площади под кривой во всем интервале существования , то есть в интервале (0, l). При этом состояниям с различными значениями главного квантового числа n соответствуют разные кривые зависимости : n = 1 соответствует график под номером 1, n = 2 – график под номером 2 и т.д. Тогда в состоянии с n = 2 вероятность обнаружить электрон в интервале от до равна .