Дан доверительный интервал (16,64; 18,92) для оценки математического ожидания нормально распределенного количественного признака. Тогда при увеличении объема выборки этот доверительный интервал может принять вид …
- ✓ (17,18; 18,38)
Доверительный интервал для оценки математического ожидания нормально распределенного количественного признака можно представить в виде симметричного интервала где точечная оценка математического ожидания а точность оценки В случае увеличения объема выборки точность оценки улучшается, то есть значение будет меньше 1,14.